Name				
Date _	×		_	3000
Instructo	r	*	×8	8

Differential Amplifier Circuits

OBJECTIVE

To calculate and measure DC and AC voltages in differential amplifier circuits.

EQUIPMENT REQUIRED

Instruments

Oscilloscope

DMM

Function generator

DC power supply

Components

Resistors

- $(1) 4.3-k\Omega$
- (4) $10-k\Omega$
- $(2) 20-k\Omega$

Transistors

(3) 2N3823, or equivalent

EQUIPMENT ISSUED

<u>Item</u>	Laboratory serial no.	
DC power supply		
Function generator		
Oscilloscope		
DMM		

RÉSUMÉ OF THEORY

BJT Differential Amplifier

A differential amplifier is a circuit with plus (+) or minus (-) inputs. In typical operation, inputs that are opposite in-phase are amplified greatly, while inputs that are in-phase are canceled at the output. Figure 27.1 is the circuit of a simple BJT differential amplifier with plus (V_i^+) input and minus (V_i^-) input, and opposite outputs, V_{o1} and V_{o2} . Typically no capacitor is needed, the input signals being DC coupled, and the positive (V_{CC}) and negative (V_{EE}) supplies providing DC bias. Using the value of r_e assumed in this experiment to be the same for both transistors, the differential voltage gain is of magnitude

$$A_v = \frac{R_C}{2r_e} \tag{27.1}$$

The gain for signals which are common at both inputs is of magnitude

$$A_v = \frac{R_C}{2R_E} \tag{27.2}$$

Figure 27-1

FET Differential Amplifier

For an FET differential amplifier the magnitude of the differential voltage gain can be calculated as

$$A_v = \frac{g_m R_D}{2} \tag{27.3}$$

PROCEDURE

Part 1. DC Bias of BJT Differential Amplifier

a. For the circuit of Fig. 27.1 calculate DC bias voltages and currents for one transistor.

V_B (calculated) =	
V_E (calculated) =	
V_C (calculated) =	=
I_E (calculated) =	
r_a (calculated) =	The second secon

b. Construct the circuit of Fig. 27.1. (Record measured value for all resistors in Fig. 27.1.) Set both supplies, $V_{CC}=10~\rm V$ and $V_{EE}=10~\rm V$. Measure and record DC bias voltages for each transistor.

$$V_{B} \, ({
m measured}) = \underline{\hspace{1cm}} V_{B} = \underline{\hspace{1cm}} V_{B} = \underline{\hspace{1cm}} V_{E} = \underline{\hspace{1cm}} V_{C} \, ({
m measured}) = \underline{\hspace{1cm}} V_{C} = \underline{$$

Using measured values determine

$$I_E = \underline{\qquad} \qquad I_E = \underline{\qquad} \qquad r_e = \underline{\qquad}$$

Compare values for each transistor to determine if they are well matched. Compare the values calculated in step $1(\mathbf{a})$ with those measured in step $1(\mathbf{b})$.

c. Apply common inputs of $V_i = 1$ V, peak to both input terminals in the circuit of Fig. 27.1. Measure and record the output from one side of the circuit.

 $V_{v_c} \, ({\rm measured}) = \underline{\hspace{1cm}}$ Calculate the common voltage gain.

$$A_{v_c} = \frac{V_{o_c}}{V_i}$$

 A_{v_c} (measured) =

Compare the voltage gains calculated in step 2(a) with those measured in steps 2(b) and 2(c).

Part 3. DC Bias of BJT Differential Amplifier with Current Source

a. Calculate DC bias voltages and currents for the amplifier of Fig. 27.2.

Figure 27-2

Part 2. AC Operation of BJT Differential Amplifier

a. Using Eqs. 27.1 and 27.2 calculate the differential and common-mode gain of the circuit in Fig. 27.1.

b. Apply input of $V_i = 20$ mV, rms at frequency f = 10 kHz to the plus (+) input and 0 V to the minus (-) input in the circuit of Fig. 27.1. Using a DMM measure, record output voltages.

 $V_{o_1} \, ({\rm measured}) = \\ V_{o_2} \, ({\rm measured}) = \\ -----$ Calculate an average value of $V_{o, \ d}$.

$$V_{o_d} = \frac{V_{o_1} + V_{o_2}}{2}$$

 $V_{o,d} =$

Calculate differential voltage gain.

$$A_{v_d} = \frac{V_{o_d}}{V_i}$$