Name	
Date	
Instructor	

Linear Op-Amp Circuits

OBJECTIVE

To measure DC and AC voltages in linear op-amp circuits.

EQUIPMENT REQUIRED

Instruments

Oscilloscope

DMM

Function generator

DC power supply

Components

Resistors

- $(1) 20-k\Omega$
- (3) $100-k\Omega$

ICs

(1) 741 Op-amp

0

0

0

.

0

•

0

0

0

0

•

0

EQUIPMENT ISSUED

Item	Laboratory serial no.	
DC power supply		
Function generator		
Oscilloscope	SPIGNETH ST	
DMM		

RÉSUMÉ OF THEORY

The op-amp is a very high gain amplifier with inverting and noninverting inputs. It can be used to provide a much smaller but exact gain set by external resistors or to sum more than one input, each input having a desired voltage gain.

As an inverting amplifier the resistors are connected to the inverting input as shown in Fig. 28.1 with output voltage

$$V_o = -\frac{R_o}{R_i} V_i \tag{28.1}$$

Figure 28-1

A noninverting amplifier is provided by the circuit of Fig. 28.2 with output voltage given by

$$V_o = \left(1 + \frac{R_o}{R_i}\right) V_i \tag{28.2}$$

Figure 28-2

Connecting the output back to the inverting input as in Fig. 28.3 provides a gain of exactly unity:

$$V_o = V_i \tag{28.3}$$

Figure 28-3

More than one input can be connected through separate resistors as shown in Fig. 28.4, with the output voltage then

$$V_o = -\left(\frac{R_o}{R_1}V_1 + \frac{R_o}{R_2}V_2\right)$$
 (28.4)

Figure 28-4

PROCEDURE

Part 1. Inverting Amplifier

a. Calculate the voltage gain for the amplifier circuit of Fig. 28.5.

Figure 28-5

Calculated voltage gain	V_o (using measure	measured) =	5 Yu
	asing measure.	a values.	
Compare the gain calcu	lated in step 1	$A_v = $	ζ
step 1(b).	rated in step 1	i(a) with that	measured in
c. Replace R_1 with a 100-kG	2 resistor. Calc	ulate V_o/V_i .	
For input of $V_i = 1 \text{ V, rms}$		alculated) =	
, , , , , ,	measure and p	record v _o .	
${\rm Calculate} A_v.$	V_o (m	easured) =	
		$A_{v} =$	
Compare the calculated ar	nd measured va	alues of the vol	tage gain.

b. Construct the circuit of Fig. 28.5. (Measure and record resistor

Using a DMM measure and record the output voltage.

values in Fig. 28.5.) Apply an input of $V_i = 1$ V, rms (f = 10 kHz).

d. Using the oscilloscope, observe and sketch the input and output waveforms in Fig. 28.6.

Vertical sensitivity = ______ Horizontal sensitivity =

Figure 28-6

Part 2. Noninverting Amplifier

a. Calculate the voltage gain of the noninverting amplifier in Fig. 28.7.

Figure 28-7

 A_v (calculated) =

b. Construct the circuit of Fig. 28.7. Apply an input of $V_i = 1$ V, rms (f = 10 kHz). Using a DMM, measure and record the output voltage.

 V_o (measured) =

Calculate the voltage gain of the circuit using measured voltages.

 $V_o/V_i =$

Compare the voltage gain calculated in step 2(a) with that measured in step 2(b).

c. Replace R_1 with a 100-k Ω resistor and repeat steps 2(a) and 2(b).

 $A_v \; (\text{calculated}) = \\ V_o \; (\text{measured}) = \\ V_o / V_i = \\ -$

Compare the calculated voltage gain with that measured.

d. Using the oscilloscope, observe and sketch the input and output waveforms in Fig. 28.8.

Vertical sensitivity = _ Horizontal sensitivity =

Figure 28-8

10

0000

Part 3. Unity-Gain Follower

a. Construct the circuit of Fig. 28.9. Apply an input signal of $V_i = 2$ V, rms (f = 10 kHz). Using a DMM, measure and record the input and output voltages.

Figure 28-9

```
V_i \text{ (measured)} = V_o \text{ (measured)} =
```

Compare the circuit voltage gain, V_o/V_i with the theoretical unity gain.

Part 4. Summing Amplifier

a. Calculate the output voltage for the circuit of Fig. 28.10 (see Fig. 28.4) with inputs of $V_1 = V_2 = 1$ V, rms.

Figure 28-10

(III City CI OF

b. Construct the circuit of Fig. 28.10. Apply inputs of $V_1 = V_2 = 1 \text{ V}$, rms (f = 10 kHz). Measure and record the output voltage.

 V_o (measured) =

Compare output voltage calculated in step 4(a) and that measured in step 4(b).

c. Change R_2 to 100 k Ω . Repeat steps 4(a) and 4(b).

 V_o (calculated) = V_o (measured) =

Compare the calculated output voltage with that measured.